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COMPUTATION OF BACKWARD-FACING STEP FLOWS BY A 
SECOND-ORDER REYNOLDS STRESS CLOSURE MODEL 
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SUMMARY 

This paper scrutinizes the predictive ability of the differential stress equation model in complex shear flows. Two 
backward-facing step flows with different expansion ratios are solved by the LRR turbulence model with an 
anisotropic dissipation model and the near-wall regions of the separated side resolved by a near-wall model. The 
computer code developed for solving the transport equations is based on the finite-volume-finite-difference 
method. In the numerical solution of the time-averaged momenum equations the Reynolds stresses are treated 
partially as a diffision term and partially as a source term to avoid numerical instability. Computational results are 
compared with experimental data. It is found that the near-wall region of the separated side resolved by the near- 
wall model, the LRR model with a simple modification of an anisotropic dissipation model can predict backward 
step flows well. 
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1. INTRODUCTION 

Flow over a backward-facing step has been extensively studied by many researchers and engineers as 
the fimdamental configuration of internal flow. This flow can be observed in many fluid devices such 
as gas turbines, jet aircraft engines, wind tunnels, diffusers and turbomachines. The configuration of 
the flow field is shown in Figure 1. Although the geometry is simple, the flow is complex and the 
theoretical study of this problem is not easy. Turbulence is itself complicated and the problem becomes 
more difficult owing to flow separation. Although the Navier-Stokes equations can properly describe 
turbulent motions in detail, it is too costly and often not necessary for engineers to secure such a 
complex and detailed solution. Instead, the ensemble-averaged Navier-Stokes equations and 
turbulence model are often considered to be sufficient and practical to describe turbulent motions. 

In the second-order closure of the turbulence model the standard k--E model has been successfully 
applied to a large number of flows such as simple shear a buoyant jet in a cross-flow’ and 
complex wall shear flows with a one-equation turbulence model near the The eddy viscosity 
model, however, makes a basic assumption that the Reynolds stress is aligned with the velocity 
gradient. This assumption is correct in simple shear flows but is not valid for complex flows such as 3D 
flows6 and asymmetric channel flows.’ Hence, in order to avoid any unreasonable prediction results, a 
differential Reynolds stress equation model is necessary for predicting complex flows. Among the 
Reynolds stress closure turbulence models which can predict more precisely a turbulent flow field at 
the expense of solving the differential equations for every Reynolds stress component, the LRR 
turbulence model’ has been tested in some simple free as well as wall shear flows and satisfactory 
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Figure 1 .  Nomenclature and geometric boundaries of step flow 

results have been obtained. Lakshminarayana6 pointed out that the Reynolds stress model has more 
potential than the k-E model when applied to the prediction of complex shear flows. 

The overall success of all modern turbulence models in internal as well as external flows is 
determined in large measure by the treatment of boundary conditions at solid walls. In applications of 
turbulence models the most popular near-wall treatment is the wall function method. Unfortunately, 
calculations of backward step flows with wall functions lead to more than 20% error in the 
reattachment This is because although the basic assumptions made in the wall function 
approach, i.e. flow parallel to the wall and equilibrium turbulence relations, are correct for simple wall 
shear flows, a certain error will be created when the method is applied to complex wall shear flows. 

An alternative to the use of wall functions is to employ turbulence models which are valid all the 
way to the wall. In recent years many researchers have tried to develop low-Reynolds-number models 
by incorporating either a wall damping effect or a direct effect of molecular viscosity, or both, in the 
empirical constants and functions in the turbulence transport equations derived originally for high- 
Reynolds-number, fully turbulence flows far from the wall. Several low-Reynolds-number models have 
been reviewed by Patel et al. lo and Michelassi and Shih.' ' In separated flows, however, low-Reynolds- 
number models have been little tested so far. Previous calculations indicated that the damping 
functions developed for attached boundary layers are not always well behaved in separated 

In order to save grid points and hence computer storage and time, to increase the robustness of the 
method and also to introduce the fairly well-established length scale distribution very near the walls 
into the turbulence model, the use of a two-layer model becomes more effective. In two-layer models 
the near-wall viscosity-affected regions are resolved, where the dissipation rate of the turbulent kinetic 
energy E is determined by a prescribed length scale distribution 1, instead of by the transport differential 
equation. Avariety of two-dimensional boundary layer and separated flows have been tested with two- 
layer models, e.g. adverse pressure gradient boundary layer flows3 and flows with secondary reverse 
flow! It has been found that two-layer models can predict more promising results than those of low- 
Reynolds-number models or the wall function approach. Hence it is c~ncluded '~ that two-layer models 
are promising tools for practical applications in flows where wall functions are either not applicable or 
inaccurate and where low-Reynolds-number models are not well behaved or too costly. 

Most two-layer models currently used adopt the two-equation k-E turbulence model in the 
calculation of the flow field remotely from the wall; the turbulent transport equation solved in the near- 
wall layer is the k-equation only, which is formally identical with the popular one-equation model of 
the 1970s. It is rare for the Reynolds stress equation model to be employed in the field of two-layer 
modelling. This may be due to the fact that the Reynolds stresses in the mean flow momentum 
equations are treated as a source term, which will lead to some additional numerical difficulty in the 
numerical computation. The appearance of a large source term in turbulent flow creates stifkess and 
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numerical instability. This difficulty has discouraged many researchers from venturing to use the 
Reynolds stress model. 

In the present study a flat plate boundary layer and two two-dimensional backward-facing step 
flows, denoted STEPl and STEP2, are solved by the LRR turbulence model with an anisotropic 
dissipation model in the framework of the two-layer modelling concept. The flat plate boundary layer is 
chosen as a test case. The STEPl flow is an experimental study of flow12 which was designed to test 
the predictive ability of turbulence models and the STEP2 is benchmark flow problem number 0421 of 
the Stanford Conference in 198 1 ,9 with expansion ratios of 1.125 and 1.5 respectively. The geometric 
boundaries of the STEPl and STEP2 flows are indicated in Figure 1 .  The purpose of this study is to 
verify the predictive ability of the Reynolds stress closure turbulence model in applications of complex 
wall shear flows by using the two-layer modelling concept and also to establish a calculation method 
which can avoid the numerical instability created by the large source term of the momentum equations 
when using the differential stress equation model. In the numerical iterations of this study the Reynolds 
stresses in the mean flow momentum equation are treated partially as a diffusion term and partially as a 
source term. It is seen from the iteration history that this treatment of the Reynolds stresses leads to a 
good conversion of the momentum equations. In the comparison of computational results with 
experimental data it is found that the LRR turbulence model with an anistotropic dissipation model can 
show good performance in predicting backward step flows. 

2. GOVERNING EQUATIONS AND SIMULATION CONCEPTS 

The exact Reynolds-averaged equations of continuity and momentum for two-dimensional, unsteady, 
incompressible fluid flow are 

au av 
-+--0, ax aY  

au au au a 1 aP -+u-+v-=- v- f- v- --(UU)--(m)---, (2) 
at ax dY &( E) say( ::) L dY P ax 

where (V, Y )  and (u, v) are the mean velocity components and fluctuating velocity components in 
directions (X, Y )  respectively, t is time, P is the mean pressure, v is the molecular kinematic viscosity 
and (UU, n, E) are the Reynolds stresses. These equations can be solved for (U, K P )  when a suitable 
turbulence model is employed for the Reynolds stress distributions. In this study the LRR turbulence 
model with an anisotropic dissipation model is used for this purpose, i.e. 
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where 

The dissipation model in the above Reynolds stress equations represented by the underlined term was 
proposed by RottaI3 (1 95 1) and is normally used to correct the near-wall anisotropic behaviour of the 
dissipation rate of the Reynolds stresses. The moduli used in the LRR turbulence model are adopted in 
this study as C, = 0.11, C1 = 1.5, C2 = 0.6, C, = 0.15, C,, = 1.44 and C,, = 1.90. 

In the viscosity-affected regions near the wall of the separated side these turbulent equations were 
modified analytically to the near-wall approach method of Chen and Patel.3 Specifically, the 
turbulent diffusion terms of the LRR turbulence model, i.e. Cs(a/dXk)[(k/E) (Ej%jdu,uk/dXl + uiu,%/aX, + ukurati;i;iS/a&)], were written as (a/aXk)(utazs;isr/aXk), where ut is given by 

and E is determined from 

= k3/2/1,. 

The length scales lP and 1, are adopted from the model 

where both length scales contain damping effects in the near-wall region in terms of the turbulence 
Reynolds number Ry= k’”Y/v. Here Y is the normal distance from the wall. The turbulence model 
moduli are given as Cl = nCiI4, A, = 2Cl and A, = 70, where IC is the Karman constant and 

In conducting the computation, the two models have to be matched at some location in a region 
where viscous effects have become negligible. In this study, preselected grid lines are set for matching 
the two models within the criterion Ry 2 250 recommended by Chen and Patel.3 

C ,  = 0.09. 

3. BOUNDARY CONDITIONS 

Four boundary conditions for each of the governing equations (1H6) are required to make the problem 
well posed. The inlet boundary conditions were specified at a location four times the step heigh (HI  or 
H2) upstream of the steps. For the velocity profiles there U was specified from the one-seventh power 
distribution to recover the measured boundary layer thicknesses dl/Hl = 0.24 and d2/H2 = 1.5 for 
STEPl and STEP2 respectively and V=O. The turbulent transport quantities were specified by the 
following values appropriate to fully developed turbulent flow assigned there: 

- k = 0.04U2, E = 0.09k3”/H, -UV = 0.25k1 iiii = 0.67k1 t;is = 0.67k. 

The outlet boundary conditions were specified at locations 30H1 and 16H2 downstream of the steps 
for STEPl and STEP2 respectively. From the experimental data it is found that the mean velocities and 
turbulent quantities are all approximately filly developed. The normal gradients of all quantities were 
taken to be zero. 

At the fixed walls the boundary conditions were specified as U = V = iiV = iiii = w = k = E = 0. 
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4. NUMERICAL TECHNIQUE 

In this study the computations were performed on a non-uniform and staggered MAC (marker-and- 
cell) grid system. In the staggered grid system the pressure and the other dependent turbulent variables 
liii, UU, VV, k and E are calculated at nodal points between those for the mean velocity. In the 
computations the grid numbers are 100 x 82 for STEP1 and 100 x 64 for STEP2 and 10 grids are set 
across the near-wall layer in the computations of the near-wall boundary. 

To solve the partial differential equations (2H6), a computer code based on the power law 
difference (PLD) method was constructed for use in the present study. Briefly, the convection and 
diffusion terms of the transport equation for 4 (4 = U ,  V ,  k ,  E ,  UU, VV, E), i.e. 

a(q+)/aq = a(ra4aqyaq + s,, 
are discretized by the power law difference and the source term by the second-order central difference 
and these are then integrated within a control volume element to obtain an algebraic equation. The 
pressure field P is solved with the SIMPLEC algorithm of Von-Doormaal and Raithby.14 The system 
of linear algebraic equations is solved by the alternating direction line-by-line iteration method. 

It should be pointed out that when applying the PLD method to solve the mean flow momentum 
equation with the differential Reynolds stress equations, some special arrangement is required to treat 
the source terms. It is known that the PLD method is an approximation to the exponential difference 
(ED) methodI5 which was originally developed and extended from the exact solution of the one- 
dimensional transport equation in which only convection and diffusion terms are present. From this 
point of view the PLD method offers a fine differencing method analogous to the analytic differencing 
methods for convection and diffusion terms. In addition, source terms are often the cause of divergence 
in the iteration of the transport equations, especially for the momentum equations of mean flow in 
which the source terms are large. 

It is known that the turbulent shear stress is often several orders larger than the molecular shear 
stress in turbulent flows. The appearance of large source terms in equation (2) creates a stiffness 
derivative and hence causes numerical instability in the numerical iterations. In simple shear flow 
calculations the turbulent shear stress -5 in the momentum equation is usually divided and multiplied 
by the velocity gradient a U / a Y ,  i.e. a(-m)/aY = a{[- i iV/ (dU/dY)]  x ( a U / a Y ) } / a Y ,  and 
- E / ( a U / a Y )  is treated as an eddy viscosity. In doing this, the turbulent shear stress is effectively cast 
into the diffusion term. However, in elliptic-type flows the velocity gradients will not always have the 
same sign as the turbulent shear stresses as they do in simple shear flows. When the velocity gradient 
and the turbulent shear stress are of opposite sign, negative nodal coefficients will be introduced. The 
presence of a negative nodal coefficient can lead to numerical instability, since the negative nodal 
coefficient will create a negative diffusion and consequently a physically unrealistic solution such that 
the solution will not converge. The appearance of numerical instability in calculating the turbulent 
Navier-Stokes equations with the differential stress equations was also reported by Amano and Goel,16 
Huang and Le~chziner'~ and Brankovic and Syned.'* 

The technique used in this study to overcome the numerical instability of the momentum equations 
is a modification of the numerical procedure of the eddy viscosity model. With the addition and 
subtraction of the eddy viscosity approximations -uiuj = (C,k2/&)(dUi/dq + a q / a X )  - $SUk and 
C, = 0.09 the Reynolds stresses can be expressed as 

k2 au av k2 au av -uv=-uv+c,-  -+- - c -  -+- 
E aY ax ( ) E (BY  ax) 

- 
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Substituting the above expressions into the momenum equation (2), the following equation is obtained: 

Physically, equation (1 1) is formally identical with equation (2) and no additional error is created. 
Numerically, however, the main Reynolds stresses are cast into turbulent diffusion forms 
(a/dx)[(C,k2/&)dU/dX] and (a/aY)[(C,k2/&)dU/dY], which can be applied via the PLD method 
in the numerical solution, and the rest into source terms -Xiii/aX - a[(C,k’/~)aU/dX]/ax and 

- a[(C,k2/~)dU/dY]/dY, which are trivial and have no serious effect on the numerical 
stability of the momentum equation; the central difference method is then applied. The accuracy and 
convergence of the numerical method have been tested by solving a boundary layer flow with zero 
pressure gradient and two step flows in this study. 

5. RESULTS AND DISCUSSION 

5.1. Test case 

The test case considered is a high-Reynolds-number, flat plate boundary layer flow. The computation 
is performed on a 40 x 50 grid system non-uniformly distributed in a W x 30 W fluid domain attached 
to a fixed flat plate. The inlet condition is a uniform flow with velocity Uo and turbulent intensity 0.2%. 
The computational results of the present Reynolds stress closure model through the two-layer 
modelling concept are shown in Figure 2. The figure presents the mean velocity and turbulent shear 
stress distributions across the boundary layer at the location X where the Reynolds number U a l v  
equals 3.6 x lo6. A comparison of numerical results with experimental data” indicates that the 
Reynolds stress closure turbulence model predicts the mean velocity and turbulent shear stress profiles 
in good agreement with the experimental data. Even in the near-wall region the agreement is almost 
perfect. This illustrates that the near-wall turbulence model of the two-equation turbulence model is 
well behaved when combined with the differential Reynolds stress equation model in solving turbulent 
shear flows. 

-9 --__ 
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: 
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o : EXP. 0.6 

2 0.4 
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Figure 2. Mean velocity and Reynolds shear stress distributions of flat plate boundary layer flow 
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The computation of the flat plate boundary layer flow provides a good test case for the numerical 
method. From the iteration history plot in Figure 3 it is seen that the above treatment of the Reynolds 
stresses in the momentum equation leads to good convergence. We also tested the computation without 
the treatment of the Reynolds stresses and found that the computational effort required then is much 
greater. Because of the limitations of our computing resources, the computation without the treatment 
of the Reynolds stresses has not been thoroughly completed even in this simple test case. It should be 
remarked here that the adoption of a differential Reynolds stress model leads to the difficulty that the 
Reynolds stresses in the momentum equation are treated as a source term in the numerical solution of 
the mean flows, and the appearance of large source terms in turbulent flows creates stifhess and hence 
numerical instability. The large source terms of the turbulence Reynolds stresses also mean that the 
higher accuracy of convection term schemes such as QUICK does not apply to turbulent flows easily. 
In the present study we provide a simple way to overcome this numerical difficulty by using the PLD 
scheme. 

5.2. Backward-facing step JIows 

Figure 4 shows the calculated streamline contours of STEPl. It is seen that the flow pattern of the 
step flow separates at the step corner, recirculates behind the step and then reattaches downstream. 
Near the lower step corner there is a small secondary recirculation zone. The horizontal distance from 
the step comer (X= 0) to the reattachment point (X=XR) is called the reattachment length. 

To verify the predictive ability of turbulence models, the first consideration is the prediction of gross 
parameters of the flow fields, among which the reattachment length is a sensitive parameter that has 
historically been used to assess the overall predictive ability of turbulence models. Table I lists the 
predicted reattachment lengths of backward step flows of the k-& and present models and compares 
them with the measured data. It is found that the reattachment lengths obtained using the ‘two-layer 
model’ are in better agreement with the measurements than those obtained using the ‘wall function’. It 
is also found that the predicted reattachment length of this study fitted the measured data fairly well 
and was better than that of the k-& model. This can be taken as a first indication that the Reynolds 
stress closure model is valid for predicting complex shear flows. 

Figures 5 and 6 show the distributions of the step-side wall static pressure along the flow obtained by 
the Reynolds stress closure model for STEPl and STEP2 respectively. In both cases the agreement 

Lz: -5 -4i iterotion l i is tory o f  f l o t  
p late boundary loycr  
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Figure 3. Iteration history of flat plate boundary layer flow 
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Figure 4. Predicted streamlines of STEPl flow in region of ( - H: 8H, 0: 3H)  

with the measured data is seen to be quite good. The streamwise mean velocity profiles of STEPl and 
STEP2 at various sections are plotted in Figures 7 and 8 respectively. In the STEPl case the calculated 
results of the k--E model’ are also shown for comparison. In both cases the computational results of this 
study exhibit good agreement with the measured data. As seen in Figure 6, the computational results of 
the k--E model generally fit the measured data well except in the reverse flow region. Where the k--E 
model overpredicts the velocity gradient near the step-side wall, it also overpredicts the wall fnction 
coefficient Cf. This is illustrated in Figure 9, which shows the distributions of Cf along the step-side 
wall of STEP1. Because of the absence of a measure profile of Cf for the STEP2 flow, the calculated 
Cfvalues of STEP2 are plotted in Figure 10 in natural co-ordinates, i.e. all distances in the streamwise 
direction are normalized by the reattachment length -X* = (XR - X)/XR, and compared with various 
experimental data.” It is known that data from various backward step experiments tend to collapse 
when plotted using XY-co-ordinates. From Figures 9 and 10 it is seen that the computational results of 
this study fit the experimental data well. It is also found that there is a positive value of Cf obtained at a 
short distance from the lower step corner (X=  0),  which indicates that a small secondary eddy existed 
around the lower step comer. The secondary eddy has also been observed in the experiments of Driver 
and Seegmiller.12 

To illustrate the suitability of the near-wall approach method clearly, Figure 11 shows the near-wall 
model calculations and the measured velocity distributions in the reverse flow region in wall co- 
ordinates; the standard logarithmic distribution is also plotted for comparison. It is clear that the 
measured profile deviates significantly from the logarithmic distribution, while the calculations of the 
present study fit the measured data well. It is known that the wall function method is not appropriate 
for some specific flows, e.g. separated flows, flows non-parallel to the wall and three-dimensional 
flows, nor in the reverse flow region behind a step. Since the wall function approach was derived based 
on the assumptions that the flow is parallel to the wall and the turbulent field is under equilibrium, 
errors will certainly be introduced by applying this method to flows which do not meet those 
requirements. On the other hand, the near-wall model adopted in this study appears to be promising 
near-wall approach method when applied to complex wall shear flows. It is also evidence that the near- 
wall flow treatment of this study is suitable. 

Table I. Separation lengths of STEPl and STEP2 

Separation length XRIH 

k-E This study EXP 
~ 

Wall function 4.2 
Two-layer model 5.2 STEP 1 

Wall b c t i o n  5.2-5.9 
Two-layer model NA STEP2 

NA 
6.1 

NA 
7.0 

6.2 

7 f l  
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Figure 5. Cp along bottom wall of STEPl 
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Figure 1 1. Reverse flow distributions of step flow in wall co-ordinates 

Figures 12 and 13 show the profiles of the Reynolds shear stress across the flow at various sections 
for STEPl and STEP2 respectively. From these figures it is also seen that the Reynolds stress closure 
turbulence model with the near-wall two-layer approach exhibits good agreement with experimental 
data. 

6 .  CONCLUDING REMARKS 

In the present study the LRR turbulence model with a simple modification of Rotta's dissipation model 
is applied to predict backward-facing step flows within the two-layer modelling concept. From the 
comparison with experimental data it is found that the present model gives a better prediction of the 
reattachment length in both STEPl and STEP2 flows than that of other turbulence models. It is also 
found that the predicted Cp, Cf, velocity and turbulent stress distributions are very realistic, thus 
confirming that with a simple modification of the dissipation model the LRR turbulence model can 
predict backward step flows well. 
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Figure 12. Reynolds shear stress distribution of STEP1 
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Figure 13. Reynolds shear stress distribution of STEP2 

In the numerical solution of the time-averaged momentum equations the Reynolds stresses are 
treated partially as a diffusion term and partially as a source term. From the iteration history it is found 
that this simple treatment leads to a good conversion in solving the time-averaged momentum 
equations numerically. 
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